Accelerated Primal-Dual Proximal Block Coordinate Updating Methods for Constrained Convex Optimization (1702.05423v3)
Abstract: Block Coordinate Update (BCU) methods enjoy low per-update computational complexity because every time only one or a few block variables would need to be updated among possibly a large number of blocks. They are also easily parallelized and thus have been particularly popular for solving problems involving large-scale dataset and/or variables. In this paper, we propose a primal-dual BCU method for solving linearly constrained convex program in multi-block variables. The method is an accelerated version of a primal-dual algorithm proposed by the authors, which applies randomization in selecting block variables to update and establishes an $O(1/t)$ convergence rate under weak convexity assumption. We show that the rate can be accelerated to $O(1/t2)$ if the objective is strongly convex. In addition, if one block variable is independent of the others in the objective, we then show that the algorithm can be modified to achieve a linear rate of convergence. The numerical experiments show that the accelerated method performs stably with a single set of parameters while the original method needs to tune the parameters for different datasets in order to achieve a comparable level of performance.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.