Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Experiment Segmentation in Scientific Discourse as Clause-level Structured Prediction using Recurrent Neural Networks (1702.05398v1)

Published 17 Feb 2017 in cs.CL

Abstract: We propose a deep learning model for identifying structure within experiment narratives in scientific literature. We take a sequence labeling approach to this problem, and label clauses within experiment narratives to identify the different parts of the experiment. Our dataset consists of paragraphs taken from open access PubMed papers labeled with rhetorical information as a result of our pilot annotation. Our model is a Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) cells that labels clauses. The clause representations are computed by combining word representations using a novel attention mechanism that involves a separate RNN. We compare this model against LSTMs where the input layer has simple or no attention and a feature rich CRF model. Furthermore, we describe how our work could be useful for information extraction from scientific literature.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.