Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Ignore or Comply? On Breaking Symmetry in Consensus (1702.04921v1)

Published 16 Feb 2017 in cs.DC

Abstract: We study consensus processes on the complete graph of $n$ nodes. Initially, each node supports one from up to n opinions. Nodes randomly and in parallel sample the opinions of constant many nodes. Based on these samples, they use an update rule to change their own opinion. The goal is to reach consensus, a configuration where all nodes support the same opinion. We compare two well-known update rules: 2-Choices and 3-Majority. In the former, each node samples two nodes and adopts their opinion if they agree. In the latter, each node samples three nodes: If an opinion is supported by at least two samples the node adopts it, otherwise it randomly adopts one of the sampled opinions. Known results for these update rules focus on initial configurations with a limited number of colors (say $n{1/3}$ ), or typically assume a bias, where one opinion has a much larger support than any other. For such biased configurations, the time to reach consensus is roughly the same for 2-Choices and 3-Majority. Interestingly, we prove that this is no longer true for configurations with a large number of initial colors. In particular, we show that 3-Majority reaches consensus with high probability in $O(n{3/4}\log{7/8}n)$ rounds, while 2-Choices can need $\Omega(n/\log n)$ rounds. We thus get the first unconditional sublinear bound for 3-Majority and the first result separating the consensus time of these processes. Along the way, we develop a framework that allows a fine-grained comparison between consensus processes from a specific class. We believe that this framework might help to classify the performance of more consensus processes.

Citations (35)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.