Papers
Topics
Authors
Recent
2000 character limit reached

Generalizing Jensen and Bregman divergences with comparative convexity and the statistical Bhattacharyya distances with comparable means (1702.04877v2)

Published 16 Feb 2017 in cs.IT, cs.LG, and math.IT

Abstract: Comparative convexity is a generalization of convexity relying on abstract notions of means. We define the Jensen divergence and the Jensen diversity from the viewpoint of comparative convexity, and show how to obtain the generalized Bregman divergences as limit cases of skewed Jensen divergences. In particular, we report explicit formula of these generalized Bregman divergences when considering quasi-arithmetic means. Finally, we introduce a generalization of the Bhattacharyya statistical distances based on comparative means using relative convexity.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 20 likes about this paper.