Finding All Useless Arcs in Directed Planar Graphs (1702.04786v4)
Abstract: We present a linear-time algorithm for simplifying flow networks on directed planar graphs: Given a directed planar graph on $n$ vertices, a source vertex $s$ and a sink vertex $t$, our algorithm removes all the arcs that do not participate in any simple $s,t$-path in linear-time. The output graph produced by our algorithm satisfies the prerequisite needed by the $O(n\log n)$-time algorithm of Weihe [FOCS'94 & JCSS'97] for computing maximum $s,t$-flow in directed planar graphs. Previously, Weihe's algorithm could not run in $O(n\log n)$-time due to the absence of the preprocessing step; all the preceding algorithms run in $\tilde{\Omega}(n2)$-time [Misiolek-Chen, COCOON'05 & IPL'06; Biedl, Brejov{\'{a}} and Vinar, MFCS'00]. Consequently, this provides an alternative $O(n\log n)$-time algorithm for computing maximum $s,t$-flow in directed planar graphs in addition to the known $O(n\log n)$-time algorithms [Borradaile-Klein, SODA'06 & J.ACM'09; Erickson, SODA'10]. Our algorithm can be seen as a (truly) linear-time $s,t$-flow sparsifier for directed planar graphs, which runs faster than any maximum $s,t$-flow algorithm (which can also be seen of as a sparsifier). The simplified structures of the resulting graph might be useful in future developments of maximum $s,t$-flow algorithms in both directed and undirected planar graphs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.