Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

On the Discrepancy Between Kleinberg's Clustering Axioms and $k$-Means Clustering Algorithm Behavior (1702.04577v2)

Published 15 Feb 2017 in cs.LG and cs.AI

Abstract: This paper investigates the validity of Kleinberg's axioms for clustering functions with respect to the quite popular clustering algorithm called $k$-means. While Kleinberg's axioms have been discussed heavily in the past, we concentrate here on the case predominantly relevant for $k$-means algorithm, that is behavior embedded in Euclidean space. We point at some contradictions and counter intuitiveness aspects of this axiomatic set within $\mathbb{R}m$ that were evidently not discussed so far. Our results suggest that apparently without defining clearly what kind of clusters we expect we will not be able to construct a valid axiomatic system. In particular we look at the shape and the gaps between the clusters. Finally we demonstrate that there exist several ways to reconcile the formulation of the axioms with their intended meaning and that under this reformulation the axioms stop to be contradictory and the real-world $k$-means algorithm conforms to this axiomatic system.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.