Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Decentralized Baseband Processing for Massive MU-MIMO Systems (1702.04458v2)

Published 15 Feb 2017 in cs.IT and math.IT

Abstract: Achieving high spectral efficiency in realistic massive multi-user (MU) multiple-input multiple-output (MIMO) wireless systems requires computationally-complex algorithms for data detection in the uplink (users transmit to base-station) and beamforming in the downlink (base-station transmits to users). Most existing algorithms are designed to be executed on centralized computing hardware at the base-station (BS), which results in prohibitive complexity for systems with hundreds or thousands of antennas and generates raw baseband data rates that exceed the limits of current interconnect technology and chip I/O interfaces. This paper proposes a novel decentralized baseband processing architecture that alleviates these bottlenecks by partitioning the BS antenna array into clusters, each associated with independent radio-frequency chains, analog and digital modulation circuitry, and computing hardware. For this architecture, we develop novel decentralized data detection and beamforming algorithms that only access local channel-state information and require low communication bandwidth among the clusters. We study the associated trade-offs between error-rate performance, computational complexity, and interconnect bandwidth, and we demonstrate the scalability of our solutions for massive MU-MIMO systems with thousands of BS antennas using reference implementations on a graphic processing unit (GPU) cluster.

Citations (108)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.