Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Relevance of Auditory-Based Gabor Features for Deep Learning in Automatic Speech Recognition (1702.04333v1)

Published 14 Feb 2017 in cs.CL

Abstract: Previous studies support the idea of merging auditory-based Gabor features with deep learning architectures to achieve robust automatic speech recognition, however, the cause behind the gain of such combination is still unknown. We believe these representations provide the deep learning decoder with more discriminable cues. Our aim with this paper is to validate this hypothesis by performing experiments with three different recognition tasks (Aurora 4, CHiME 2 and CHiME 3) and assess the discriminability of the information encoded by Gabor filterbank features. Additionally, to identify the contribution of low, medium and high temporal modulation frequencies subsets of the Gabor filterbank were used as features (dubbed LTM, MTM and HTM respectively). With temporal modulation frequencies between 16 and 25 Hz, HTM consistently outperformed the remaining ones in every condition, highlighting the robustness of these representations against channel distortions, low signal-to-noise ratios and acoustically challenging real-life scenarios with relative improvements from 11 to 56% against a Mel-filterbank-DNN baseline. To explain the results, a measure of similarity between phoneme classes from DNN activations is proposed and linked to their acoustic properties. We find this measure to be consistent with the observed error rates and highlight specific differences on phoneme level to pinpoint the benefit of the proposed features.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.