Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Reception Capacity: Definitions, Game Theory and Hardness (1702.03978v3)

Published 13 Feb 2017 in cs.GT

Abstract: The capacity of wireless networks is a classic and important topic of study. Informally, the capacity of a network is simply the total amount of information which it can transfer. In the context of models of wireless radio networks, this has usually meant the total number of point-to-point messages which can be sent or received in one time step. This definition has seen intensive study in recent years, particularly with respect to more accurate models of radio networks such as the SINR model. This paper is motivated by an obvious fact: radio antennae are (at least traditionally) omnidirectional, and hence point-to-point connections are not necessarily the best definition of the true capacity of a wireless network. To fix this, we introduce a new definition of reception capacity as the maximum number of messages which can be received in one round, and show that this is related to a new optimization problem we call the Maximum Perfect Dominated Set (MaxPDS) problem. Using this relationship we give a tight lower bound for approximating this capacity which essentially matches a known upper bound. As our main result, we analyze this notion of capacity under game-theoretic constraints, giving tight bounds on the average quality achieved at any coarse correlated equilibrium (and thus at any Nash). This immediately gives bounds on the average behavior of the natural distributed algorithm in which every transmitter uses online learning algorithms to learn whether to transmit.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.