On the Courtade-Kumar conjecture for certain classes of Boolean functions (1702.03953v1)
Abstract: We prove the Courtade-Kumar conjecture, for certain classes of $n$-dimensional Boolean functions, $\forall n\geq 2$ and for all values of the error probability of the binary symmetric channel, $\forall 0 \leq p \leq \frac{1}{2}$. Let $\mathbf{X}=[X_1...X_n]$ be a vector of independent and identically distributed Bernoulli$(\frac{1}{2})$ random variables, which are the input to a memoryless binary symmetric channel, with the error probability in the interval $0 \leq p \leq \frac{1}{2}$, and $\mathbf{Y}=[Y_1...Y_n]$ the corresponding output. Let $f:{0,1}n \rightarrow {0,1}$ be an $n$-dimensional Boolean function. Then, the Courtade-Kumar conjecture states that the mutual information $\operatorname{MI}(f(\mathbf{X}),\mathbf{Y}) \leq 1-\operatorname{H}(p)$, where $\operatorname{H}(p)$ is the binary entropy function.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.