Subspace Identification of Large-Scale 1D Homogeneous Networks (1702.03539v1)
Abstract: This paper considers the identification of large-scale 1D networks consisting of identical LTI dynamical systems. A new subspace identification method is developed that only uses local input-output information and does not rely on knowledge about the local state interaction. The identification of the local system matrices (up to a similarity transformation) is done via a low dimensional subspace retrieval step that enables the estimation of the Markov parameters of a locally lifted system. Using the estimated Markov parameters, the state-space realization of a single subsystem in the network is determined. The low dimensional subspace retrieval step exploits various key structural properties that are present in the data equation such as a low rank property and a {\em two-layer} Toeplitz structure in the data matrices constructed from products of the system matrices. For the estimation of the system matrices of a single subsystem, it is formulated as a structured low-rank matrix factorization problem. The effectiveness of the proposed identification method is demonstrated by a simulation example.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.