Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Concept Embeddings for Efficient Bag-of-Concepts Densification (1702.03342v2)

Published 10 Feb 2017 in cs.CL

Abstract: Explicit concept space models have proven efficacy for text representation in many natural language and text mining applications. The idea is to embed textual structures into a semantic space of concepts which captures the main ideas, objects, and the characteristics of these structures. The so called Bag of Concepts (BoC) representation suffers from data sparsity causing low similarity scores between similar texts due to low concept overlap. To address this problem, we propose two neural embedding models to learn continuous concept vectors. Once they are learned, we propose an efficient vector aggregation method to generate fully continuous BoC representations. We evaluate our concept embedding models on three tasks: 1) measuring entity semantic relatedness and ranking where we achieve 1.6% improvement in correlation scores, 2) dataless concept categorization where we achieve state-of-the-art performance and reduce the categorization error rate by more than 5% compared to five prior word and entity embedding models, and 3) dataless document classification where our models outperform the sparse BoC representations. In addition, by exploiting our efficient linear time vector aggregation method, we achieve better accuracy scores with much less concept dimensions compared to previous BoC densification methods which operate in polynomial time and require hundreds of dimensions in the BoC representation.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube