Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generative Mixture of Networks (1702.03307v1)

Published 10 Feb 2017 in cs.LG and stat.ML

Abstract: A generative model based on training deep architectures is proposed. The model consists of K networks that are trained together to learn the underlying distribution of a given data set. The process starts with dividing the input data into K clusters and feeding each of them into a separate network. After few iterations of training networks separately, we use an EM-like algorithm to train the networks together and update the clusters of the data. We call this model Mixture of Networks. The provided model is a platform that can be used for any deep structure and be trained by any conventional objective function for distribution modeling. As the components of the model are neural networks, it has high capability in characterizing complicated data distributions as well as clustering data. We apply the algorithm on MNIST hand-written digits and Yale face datasets. We also demonstrate the clustering ability of the model using some real-world and toy examples.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.