Papers
Topics
Authors
Recent
2000 character limit reached

Inductive Pairwise Ranking: Going Beyond the n log(n) Barrier (1702.02661v1)

Published 9 Feb 2017 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: We study the problem of ranking a set of items from nonactively chosen pairwise preferences where each item has feature information with it. We propose and characterize a very broad class of preference matrices giving rise to the Feature Low Rank (FLR) model, which subsumes several models ranging from the classic Bradley-Terry-Luce (BTL) (Bradley and Terry 1952) and Thurstone (Thurstone 1927) models to the recently proposed blade-chest (Chen and Joachims 2016) and generic low-rank preference (Rajkumar and Agarwal 2016) models. We use the technique of matrix completion in the presence of side information to develop the Inductive Pairwise Ranking (IPR) algorithm that provably learns a good ranking under the FLR model, in a sample-efficient manner. In practice, through systematic synthetic simulations, we confirm our theoretical findings regarding improvements in the sample complexity due to the use of feature information. Moreover, on popular real-world preference learning datasets, with as less as 10% sampling of the pairwise comparisons, our method recovers a good ranking.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.