Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Rapid parametric density estimation (1702.02144v2)

Published 7 Feb 2017 in cs.LG

Abstract: Parametric density estimation, for example as Gaussian distribution, is the base of the field of statistics. Machine learning requires inexpensive estimation of much more complex densities, and the basic approach is relatively costly maximum likelihood estimation (MLE). There will be discussed inexpensive density estimation, for example literally fitting a polynomial (or Fourier series) to the sample, which coefficients are calculated by just averaging monomials (or sine/cosine) over the sample. Another discussed basic application is fitting distortion to some standard distribution like Gaussian - analogously to ICA, but additionally allowing to reconstruct the disturbed density. Finally, by using weighted average, it can be also applied for estimation of non-probabilistic densities, like modelling mass distribution, or for various clustering problems by using negative (or complex) weights: fitting a function which sign (or argument) determines clusters. The estimated parameters are approaching the optimal values with error dropping like $1/\sqrt{n}$, where $n$ is the sample size.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)