Emergent Mind

Abstract

Although there exist plentiful theories of empirical risk minimization (ERM) for supervised learning, current theoretical understandings of ERM for a related problemstochastic convex optimization (SCO), are limited. In this work, we strengthen the realm of ERM for SCO by exploiting smoothness and strong convexity conditions to improve the risk bounds. First, we establish an $\widetilde{O}(d/n + \sqrt{F*/n})$ risk bound when the random function is nonnegative, convex and smooth, and the expected function is Lipschitz continuous, where $d$ is the dimensionality of the problem, $n$ is the number of samples, and $F$ is the minimal risk. Thus, when $F_$ is small we obtain an $\widetilde{O}(d/n)$ risk bound, which is analogous to the $\widetilde{O}(1/n)$ optimistic rate of ERM for supervised learning. Second, if the objective function is also $\lambda$-strongly convex, we prove an $\widetilde{O}(d/n + \kappa F*/n )$ risk bound where $\kappa$ is the condition number, and improve it to $O(1/[\lambda n2] + \kappa F/n)$ when $n=\widetilde{\Omega}(\kappa d)$. As a result, we obtain an $O(\kappa/n2)$ risk bound under the condition that $n$ is large and $F_$ is small, which to the best of our knowledge, is the first $O(1/n2)$-type of risk bound of ERM. Third, we stress that the above results are established in a unified framework, which allows us to derive new risk bounds under weaker conditions, e.g., without convexity of the random function and Lipschitz continuity of the expected function. Finally, we demonstrate that to achieve an $O(1/[\lambda n2] + \kappa F_*/n)$ risk bound for supervised learning, the $\widetilde{\Omega}(\kappa d)$ requirement on $n$ can be replaced with $\Omega(\kappa2)$, which is dimensionality-independent.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.