Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Hashing in the Zero Shot Framework with Domain Adaptation (1702.01933v2)

Published 7 Feb 2017 in cs.CV

Abstract: Techniques to learn hash codes which can store and retrieve large dimensional multimedia data efficiently have attracted broad research interests in the recent years. With rapid explosion of newly emerged concepts and online data, existing supervised hashing algorithms suffer from the problem of scarcity of ground truth annotations due to the high cost of obtaining manual annotations. Therefore, we propose an algorithm to learn a hash function from training images belonging to seen' classes which can efficiently encode images ofunseen' classes to binary codes. Specifically, we project the image features from visual space and semantic features from semantic space into a common Hamming subspace. Earlier works to generate hash codes have tried to relax the discrete constraints on hash codes and solve the continuous optimization problem. However, it often leads to quantization errors. In this work, we use the max-margin classifier to learn an efficient hash function. To address the concern of domain-shift which may arise due to the introduction of new classes, we also introduce an unsupervised domain adaptation model in the proposed hashing framework. Results on the three datasets show the advantage of using domain adaptation in learning a high-quality hash function and superiority of our method for the task of image retrieval performance as compared to several state-of-the-art hashing methods.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.