Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Toward the automated analysis of complex diseases in genome-wide association studies using genetic programming (1702.01780v1)

Published 6 Feb 2017 in cs.NE, cs.LG, q-bio.QM, and stat.ML

Abstract: Machine learning has been gaining traction in recent years to meet the demand for tools that can efficiently analyze and make sense of the ever-growing databases of biomedical data in health care systems around the world. However, effectively using machine learning methods requires considerable domain expertise, which can be a barrier of entry for bioinformaticians new to computational data science methods. Therefore, off-the-shelf tools that make machine learning more accessible can prove invaluable for bioinformaticians. To this end, we have developed an open source pipeline optimization tool (TPOT-MDR) that uses genetic programming to automatically design machine learning pipelines for bioinformatics studies. In TPOT-MDR, we implement Multifactor Dimensionality Reduction (MDR) as a feature construction method for modeling higher-order feature interactions, and combine it with a new expert knowledge-guided feature selector for large biomedical data sets. We demonstrate TPOT-MDR's capabilities using a combination of simulated and real world data sets from human genetics and find that TPOT-MDR significantly outperforms modern machine learning methods such as logistic regression and eXtreme Gradient Boosting (XGBoost). We further analyze the best pipeline discovered by TPOT-MDR for a real world problem and highlight TPOT-MDR's ability to produce a high-accuracy solution that is also easily interpretable.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube