Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Generating online social networks based on socio-demographic attributes (1702.01434v1)

Published 5 Feb 2017 in cs.SI and physics.soc-ph

Abstract: Recent years have seen tremendous growth of many online social networks such as Facebook, LinkedIn and MySpace. People connect to each other through these networks forming large social communities providing researchers rich datasets to understand, model and predict social interactions and behaviors. New contacts in these networks can be formed due to an individual's demographic attributes such as age group, gender, geographic location, or due to a network's structural dynamics such as triadic closure and preferential attachment, or a combination of both demographic and structural characteristics. A number of network generation models have been proposed in the last decade to explain the structure, evolution and processes taking place in different types of networks, and notably social networks. Network generation models studied in the literature primarily consider structural properties, and in some cases an individual's demographic profile in the formation of new social contacts. These models do not present a mechanism to combine both structural and demographic characteristics for the formation of new links. In this paper, we propose a new network generation algorithm which incorporates both these characteristics to model network formation. We use different publicly available Facebook datasets as benchmarks to demonstrate the correctness of the proposed network generation model. The proposed model is flexible and thus can generate networks with varying demographic and structural properties.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.