Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

On Robustness in Multilayer Interdependent Network (1702.01018v1)

Published 24 Jan 2017 in cs.NI and cs.AI

Abstract: Critical Infrastructures like power and communication networks are highly interdependent on each other for their full functionality. Many significant research have been pursued to model the interdependency and failure analysis of these interdependent networks. However, most of these models fail to capture the complex interdependencies that might actually exist between the infrastructures. The \emph{Implicative Interdependency Model} that utilizes Boolean Logic to capture complex interdependencies was recently proposed which overcome the limitations of the existing models. A number of problems were studies based on this model. In this paper we study the \textit{Robustness} problem in Interdependent Power and Communication Network. The robustness is defined with respect to two parameters $K \in I{+} \cup {0}$ and $\rho \in (0,1]$. We utilized the \emph{Implicative Interdependency Model} model to capture the complex interdependency between the two networks. The model classifies the interdependency relations into four cases. Computational complexity of the problem is analyzed for each of these cases. A polynomial time algorithm is designed for the first case that outputs the optimal solution. All the other cases are proved to be NP-complete. An in-approximability bound is provided for the third case. For the general case we formulate an Integer Linear Program to get the optimal solution and a polynomial time heuristic. The applicability of the heuristic is evaluated using power and communication network data of Maricopa County, Arizona. The experimental results showed that the heuristic almost always produced near optimal value of parameter $K$ for $\rho < 0.42$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.