Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Untangling Planar Curves (1702.00146v1)

Published 1 Feb 2017 in cs.CG and math.GT

Abstract: Any generic closed curve in the plane can be transformed into a simple closed curve by a finite sequence of local transformations called homotopy moves. We prove that simplifying a planar closed curve with $n$ self-crossings requires $\Theta(n{3/2})$ homotopy moves in the worst case. Our algorithm improves the best previous upper bound $O(n2)$, which is already implicit in the classical work of Steinitz; the matching lower bound follows from the construction of closed curves with large defect, a topological invariant of generic closed curves introduced by Aicardi and Arnold. Our lower bound also implies that $\Omega(n{3/2})$ facial electrical transformations are required to reduce any plane graph with treewidth $\Omega(\sqrt{n})$ to a single vertex, matching known upper bounds for rectangular and cylindrical grid graphs. More generally, we prove that transforming one immersion of $k$ circles with at most $n$ self-crossings into another requires $\Theta(n{3/2} + nk + k2)$ homotopy moves in the worst case. Finally, we prove that transforming one noncontractible closed curve to another on any orientable surface requires $\Omega(n2)$ homotopy moves in the worst case; this lower bound is tight if the curve is homotopic to a simple closed curve.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.