Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

EmbedJoin: Efficient Edit Similarity Joins via Embeddings (1702.00093v3)

Published 1 Feb 2017 in cs.DB

Abstract: We study the problem of edit similarity joins, where given a set of strings and a threshold value $K$, we want to output all pairs of strings whose edit distances are at most $K$. Edit similarity join is a fundamental problem in data cleaning/integration, bioinformatics, collaborative filtering and natural language processing, and has been identified as a primitive operator for database systems. This problem has been studied extensively in the literature. However, we have observed that all the existing algorithms fall short on long strings and large distance thresholds. In this paper we propose an algorithm named EmbedJoin which scales very well with string length and distance threshold. Our algorithm is built on the recent advance of metric embeddings for edit distance, and is very different from all of the previous approaches. We demonstrate via an extensive set of experiments that EmbedJoin significantly outperforms the previous best algorithms on long strings and large distance thresholds.

Citations (46)

Summary

We haven't generated a summary for this paper yet.