Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Memory Augmented Neural Networks with Wormhole Connections (1701.08718v1)

Published 30 Jan 2017 in cs.LG, cs.NE, and stat.ML

Abstract: Recent empirical results on long-term dependency tasks have shown that neural networks augmented with an external memory can learn the long-term dependency tasks more easily and achieve better generalization than vanilla recurrent neural networks (RNN). We suggest that memory augmented neural networks can reduce the effects of vanishing gradients by creating shortcut (or wormhole) connections. Based on this observation, we propose a novel memory augmented neural network model called TARDIS (Temporal Automatic Relation Discovery in Sequences). The controller of TARDIS can store a selective set of embeddings of its own previous hidden states into an external memory and revisit them as and when needed. For TARDIS, memory acts as a storage for wormhole connections to the past to propagate the gradients more effectively and it helps to learn the temporal dependencies. The memory structure of TARDIS has similarities to both Neural Turing Machines (NTM) and Dynamic Neural Turing Machines (D-NTM), but both read and write operations of TARDIS are simpler and more efficient. We use discrete addressing for read/write operations which helps to substantially to reduce the vanishing gradient problem with very long sequences. Read and write operations in TARDIS are tied with a heuristic once the memory becomes full, and this makes the learning problem simpler when compared to NTM or D-NTM type of architectures. We provide a detailed analysis on the gradient propagation in general for MANNs. We evaluate our models on different long-term dependency tasks and report competitive results in all of them.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.