Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Comparative Study on Different Types of Approaches to Bengali document Categorization (1701.08694v1)

Published 27 Jan 2017 in cs.CL and cs.LG

Abstract: Document categorization is a technique where the category of a document is determined. In this paper three well-known supervised learning techniques which are Support Vector Machine(SVM), Na\"ive Bayes(NB) and Stochastic Gradient Descent(SGD) compared for Bengali document categorization. Besides classifier, classification also depends on how feature is selected from dataset. For analyzing those classifier performances on predicting a document against twelve categories several feature selection techniques are also applied in this article namely Chi square distribution, normalized TFIDF (term frequency-inverse document frequency) with word analyzer. So, we attempt to explore the efficiency of those three-classification algorithms by using two different feature selection techniques in this article.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.