Simple approximate equilibria in games with many players (1701.07956v1)
Abstract: We consider $\epsilon$-equilibria notions for constant value of $\epsilon$ in $n$-player $m$-actions games where $m$ is a constant. We focus on the following question: What is the largest grid size over the mixed strategies such that $\epsilon$-equilibrium is guaranteed to exist over this grid. For Nash equilibrium, we prove that constant grid size (that depends on $\epsilon$ and $m$, but not on $n$) is sufficient to guarantee existence of weak approximate equilibrium. This result implies a polynomial (in the input) algorithm for weak approximate equilibrium. For approximate Nash equilibrium we introduce a closely related question and prove its \emph{equivalence} to the well-known Beck-Fiala conjecture from discrepancy theory. To the best of our knowledge this is the first result introduces a connection between game theory and discrepancy theory. For correlated equilibrium, we prove a $O(\frac{1}{\log n})$ lower-bound on the grid size, which matches the known upper bound of $\Omega(\frac{1}{\log n})$. Our result implies an $\Omega(\log n)$ lower bound on the rate of convergence of dynamics (any dynamic) to approximate correlated (and coarse correlated) equilibrium. Again, this lower bound matches the $O(\log n)$ upper bound that is achieved by regret minimizing algorithms.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.