Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Network Backboning with Noisy Data (1701.07336v1)

Published 25 Jan 2017 in physics.soc-ph, cs.DS, and cs.SI

Abstract: Networks are powerful instruments to study complex phenomena, but they become hard to analyze in data that contain noise. Network backbones provide a tool to extract the latent structure from noisy networks by pruning non-salient edges. We describe a new approach to extract such backbones. We assume that edge weights are drawn from a binomial distribution, and estimate the error-variance in edge weights using a Bayesian framework. Our approach uses a more realistic null model for the edge weight creation process than prior work. In particular, it simultaneously considers the propensity of nodes to send and receive connections, whereas previous approaches only considered nodes as emitters of edges. We test our model with real world networks of different types (flows, stocks, co-occurrences, directed, undirected) and show that our Noise-Corrected approach returns backbones that outperform other approaches on a number of criteria. Our approach is scalable, able to deal with networks with millions of edges.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.