Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fine-Grained Parameterized Complexity Analysis of Graph Coloring Problems (1701.06985v1)

Published 24 Jan 2017 in cs.DS and cs.CC

Abstract: The $q$-Coloring problem asks whether the vertices of a graph can be properly colored with $q$ colors. Lokshtanov et al. [SODA 2011] showed that $q$-Coloring on graphs with a feedback vertex set of size $k$ cannot be solved in time $\mathcal{O}*((q-\varepsilon)k)$, for any $\varepsilon > 0$, unless the Strong Exponential-Time Hypothesis (SETH) fails. In this paper we perform a fine-grained analysis of the complexity of $q$-Coloring with respect to a hierarchy of parameters. We show that even when parameterized by the vertex cover number, $q$ must appear in the base of the exponent: Unless ETH fails, there is no universal constant $\theta$ such that $q$-Coloring parameterized by vertex cover can be solved in time $\mathcal{O}*(\thetak)$ for all fixed $q$. We apply a method due to Jansen and Kratsch [Inform. & Comput. 2013] to prove that there are $\mathcal{O}*((q - \varepsilon)k)$ time algorithms where $k$ is the vertex deletion distance to several graph classes $\mathcal{F}$ for which $q$-Coloring is known to be solvable in polynomial time. We generalize earlier ad-hoc results by showing that if $\mathcal{F}$ is a class of graphs whose $(q+1)$-colorable members have bounded treedepth, then there exists some $\varepsilon > 0$ such that $q$-Coloring can be solved in time $\mathcal{O}*((q-\varepsilon)k)$ when parameterized by the size of a given modulator to $\mathcal{F}$. In contrast, we prove that if $\mathcal{F}$ is the class of paths - some of the simplest graphs of unbounded treedepth - then no such algorithm can exist unless SETH fails.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.