Emergent Mind

Fine-Grained Parameterized Complexity Analysis of Graph Coloring Problems

(1701.06985)
Published Jan 24, 2017 in cs.DS and cs.CC

Abstract

The $q$-Coloring problem asks whether the vertices of a graph can be properly colored with $q$ colors. Lokshtanov et al. [SODA 2011] showed that $q$-Coloring on graphs with a feedback vertex set of size $k$ cannot be solved in time $\mathcal{O}*((q-\varepsilon)k)$, for any $\varepsilon > 0$, unless the Strong Exponential-Time Hypothesis (SETH) fails. In this paper we perform a fine-grained analysis of the complexity of $q$-Coloring with respect to a hierarchy of parameters. We show that even when parameterized by the vertex cover number, $q$ must appear in the base of the exponent: Unless ETH fails, there is no universal constant $\theta$ such that $q$-Coloring parameterized by vertex cover can be solved in time $\mathcal{O}*(\thetak)$ for all fixed $q$. We apply a method due to Jansen and Kratsch [Inform. & Comput. 2013] to prove that there are $\mathcal{O}*((q - \varepsilon)k)$ time algorithms where $k$ is the vertex deletion distance to several graph classes $\mathcal{F}$ for which $q$-Coloring is known to be solvable in polynomial time. We generalize earlier ad-hoc results by showing that if $\mathcal{F}$ is a class of graphs whose $(q+1)$-colorable members have bounded treedepth, then there exists some $\varepsilon > 0$ such that $q$-Coloring can be solved in time $\mathcal{O}*((q-\varepsilon)k)$ when parameterized by the size of a given modulator to $\mathcal{F}$. In contrast, we prove that if $\mathcal{F}$ is the class of paths - some of the simplest graphs of unbounded treedepth - then no such algorithm can exist unless SETH fails.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.