Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Rare Disease Physician Targeting: A Factor Graph Approach (1701.05644v1)

Published 19 Jan 2017 in stat.ML and cs.LG

Abstract: In rare disease physician targeting, a major challenge is how to identify physicians who are treating diagnosed or underdiagnosed rare diseases patients. Rare diseases have extremely low incidence rate. For a specified rare disease, only a small number of patients are affected and a fractional of physicians are involved. The existing targeting methodologies, such as segmentation and profiling, are developed under mass market assumption. They are not suitable for rare disease market where the target classes are extremely imbalanced. The authors propose a graphical model approach to predict targets by jointly modeling physician and patient features from different data spaces and utilizing the extra relational information. Through an empirical example with medical claim and prescription data, the proposed approach demonstrates better accuracy in finding target physicians. The graph representation also provides visual interpretability of relationship among physicians and patients. The model can be extended to incorporate more complex dependency structures. This article contributes to the literature of exploring the benefit of utilizing relational dependencies among entities in healthcare industry.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.