Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Fast and Efficient Skin Detection for Facial Detection (1701.05595v1)

Published 19 Jan 2017 in cs.CV

Abstract: In this paper, an efficient skin detection system is proposed. The algorithm is based on a very fast efficient pre-processing step utilizing the concept of ternary conversion in order to identify candidate windows and subsequently, a novel local two-stage diffusion method which has F-score accuracy of 0.5978 on SDD dataset. The pre-processing step has been proven to be useful to boost the speed of the system by eliminating 82% of an image in average. This is obtained by keeping the true positive rate above 98%. In addition, a novel segmentation algorithm is also designed to process candidate windows which is quantitatively and qualitatively proven to be very efficient in term of accuracy. The algorithm has been implemented in FPGA to obtain real-time processing speed. The system is designed fully pipeline and the inherent parallel structure of the algorithm is fully exploited to maximize the performance. The system is implemented on a Spartan-6 LXT45 Xilinx FPGA and it is capable of processing 98 frames of 640*480 24-bit color images per second.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.