Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The maximum mutual information between the output of a discrete symmetric channel and several classes of Boolean functions of its input (1701.05014v2)

Published 18 Jan 2017 in cs.IT and math.IT

Abstract: We prove the Courtade-Kumar conjecture, for several classes of n-dimensional Boolean functions, for all $n \geq 2$ and for all values of the error probability of the binary symmetric channel, $0 \leq p \leq 1/2$. This conjecture states that the mutual information between any Boolean function of an n-dimensional vector of independent and identically distributed inputs to a memoryless binary symmetric channel and the corresponding vector of outputs is upper-bounded by $1-\operatorname{H}(p)$, where $\operatorname{H}(p)$ represents the binary entropy function. That is, let $\mathbf{X}=[X_1 \ldots X_n]$ be a vector of independent and identically distributed Bernoulli(1/2) random variables, which are the input to a memoryless binary symmetric channel, with the error probability in the interval $0 \leq p \leq 1/2$ and $\mathbf{Y}=[Y_1 \ldots Y_n]$ the corresponding output. Let $f:{0,1}n \rightarrow {0,1}$ be an n-dimensional Boolean function. Then, $\operatorname{MI}(f(X),Y) \leq 1-\operatorname{H}(p)$. Our proof employs Karamata's theorem, concepts from probability theory, transformations of random variables and vectors and algebraic manipulations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)