Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sum of squares lower bounds for refuting any CSP (1701.04521v1)

Published 17 Jan 2017 in cs.CC

Abstract: Let $P:{0,1}k \to {0,1}$ be a nontrivial $k$-ary predicate. Consider a random instance of the constraint satisfaction problem $\mathrm{CSP}(P)$ on $n$ variables with $\Delta n$ constraints, each being $P$ applied to $k$ randomly chosen literals. Provided the constraint density satisfies $\Delta \gg 1$, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate $P$ supports a $t$-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree $d = \Theta(\frac{n}{\Delta{2/(t-1)} \log \Delta})$ (which runs in time $n{O(d)}$) \emph{cannot} refute a random instance of $\mathrm{CSP}(P)$. In particular, the polynomial-time SOS algorithm requires $\widetilde{\Omega}(n{(t+1)/2})$ constraints to refute random instances of CSP$(P)$ when $P$ supports a $t$-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least $\widetilde{\Omega}(n{(t+1)/2})$ constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~$P$, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.

Citations (104)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.