Sum of squares lower bounds for refuting any CSP (1701.04521v1)
Abstract: Let $P:{0,1}k \to {0,1}$ be a nontrivial $k$-ary predicate. Consider a random instance of the constraint satisfaction problem $\mathrm{CSP}(P)$ on $n$ variables with $\Delta n$ constraints, each being $P$ applied to $k$ randomly chosen literals. Provided the constraint density satisfies $\Delta \gg 1$, such an instance is unsatisfiable with high probability. The \emph{refutation} problem is to efficiently find a proof of unsatisfiability. We show that whenever the predicate $P$ supports a $t$-\emph{wise uniform} probability distribution on its satisfying assignments, the sum of squares (SOS) algorithm of degree $d = \Theta(\frac{n}{\Delta{2/(t-1)} \log \Delta})$ (which runs in time $n{O(d)}$) \emph{cannot} refute a random instance of $\mathrm{CSP}(P)$. In particular, the polynomial-time SOS algorithm requires $\widetilde{\Omega}(n{(t+1)/2})$ constraints to refute random instances of CSP$(P)$ when $P$ supports a $t$-wise uniform distribution on its satisfying assignments. Together with recent work of Lee et al. [LRS15], our result also implies that \emph{any} polynomial-size semidefinite programming relaxation for refutation requires at least $\widetilde{\Omega}(n{(t+1)/2})$ constraints. Our results (which also extend with no change to CSPs over larger alphabets) subsume all previously known lower bounds for semialgebraic refutation of random CSPs. For every constraint predicate~$P$, they give a three-way hardness tradeoff between the density of constraints, the SOS degree (hence running time), and the strength of the refutation. By recent algorithmic results of Allen et al. [AOW15] and Raghavendra et al. [RRS16], this full three-way tradeoff is \emph{tight}, up to lower-order factors.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.