Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Achieving Privacy in the Adversarial Multi-Armed Bandit (1701.04222v1)

Published 16 Jan 2017 in cs.LG, cs.AI, and cs.CR

Abstract: In this paper, we improve the previously best known regret bound to achieve $\epsilon$-differential privacy in oblivious adversarial bandits from $\mathcal{O}{(T{2/3}/\epsilon)}$ to $\mathcal{O}{(\sqrt{T} \ln T /\epsilon)}$. This is achieved by combining a Laplace Mechanism with EXP3. We show that though EXP3 is already differentially private, it leaks a linear amount of information in $T$. However, we can improve this privacy by relying on its intrinsic exponential mechanism for selecting actions. This allows us to reach $\mathcal{O}{(\sqrt{\ln T})}$-DP, with a regret of $\mathcal{O}{(T{2/3})}$ that holds against an adaptive adversary, an improvement from the best known of $\mathcal{O}{(T{3/4})}$. This is done by using an algorithm that run EXP3 in a mini-batch loop. Finally, we run experiments that clearly demonstrate the validity of our theoretical analysis.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.