Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Sparse Kernel Canonical Correlation Analysis via $\ell_1$-regularization (1701.04207v1)

Published 16 Jan 2017 in stat.ML

Abstract: Canonical correlation analysis (CCA) is a multivariate statistical technique for finding the linear relationship between two sets of variables. The kernel generalization of CCA named kernel CCA has been proposed to find nonlinear relations between datasets. Despite their wide usage, they have one common limitation that is the lack of sparsity in their solution. In this paper, we consider sparse kernel CCA and propose a novel sparse kernel CCA algorithm (SKCCA). Our algorithm is based on a relationship between kernel CCA and least squares. Sparsity of the dual transformations is introduced by penalizing the $\ell_{1}$-norm of dual vectors. Experiments demonstrate that our algorithm not only performs well in computing sparse dual transformations but also can alleviate the over-fitting problem of kernel CCA.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.