Quantum algorithm for multivariate polynomial interpolation (1701.03990v2)
Abstract: How many quantum queries are required to determine the coefficients of a degree-$d$ polynomial in $n$ variables? We present and analyze quantum algorithms for this multivariate polynomial interpolation problem over the fields $\mathbb{F}q$, $\mathbb{R}$, and $\mathbb{C}$. We show that $k{\mathbb{C}}$ and $2k_{\mathbb{C}}$ queries suffice to achieve probability $1$ for $\mathbb{C}$ and $\mathbb{R}$, respectively, where $k_{\mathbb{C}}=\smash{\lceil\frac{1}{n+1}{n+d\choose d}\rceil}$ except for $d=2$ and four other special cases. For $\mathbb{F}q$, we show that $\smash{\lceil\frac{d}{n+d}{n+d\choose d}\rceil}$ queries suffice to achieve probability approaching $1$ for large field order $q$. The classical query complexity of this problem is $\smash{n+d\choose d}$, so our result provides a speedup by a factor of $n+1$, $\frac{n+1}{2}$, and $\frac{n+d}{d}$ for $\mathbb{C}$, $\mathbb{R}$, and $\mathbb{F}_q$, respectively. Thus we find a much larger gap between classical and quantum algorithms than the univariate case, where the speedup is by a factor of $2$. For the case of $\mathbb{F}_q$, we conjecture that $2k{\mathbb{C}}$ queries also suffice to achieve probability approaching $1$ for large field order $q$, although we leave this as an open problem.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.