Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum algorithm for multivariate polynomial interpolation (1701.03990v2)

Published 15 Jan 2017 in quant-ph, cs.CC, and cs.DS

Abstract: How many quantum queries are required to determine the coefficients of a degree-$d$ polynomial in $n$ variables? We present and analyze quantum algorithms for this multivariate polynomial interpolation problem over the fields $\mathbb{F}q$, $\mathbb{R}$, and $\mathbb{C}$. We show that $k{\mathbb{C}}$ and $2k_{\mathbb{C}}$ queries suffice to achieve probability $1$ for $\mathbb{C}$ and $\mathbb{R}$, respectively, where $k_{\mathbb{C}}=\smash{\lceil\frac{1}{n+1}{n+d\choose d}\rceil}$ except for $d=2$ and four other special cases. For $\mathbb{F}q$, we show that $\smash{\lceil\frac{d}{n+d}{n+d\choose d}\rceil}$ queries suffice to achieve probability approaching $1$ for large field order $q$. The classical query complexity of this problem is $\smash{n+d\choose d}$, so our result provides a speedup by a factor of $n+1$, $\frac{n+1}{2}$, and $\frac{n+d}{d}$ for $\mathbb{C}$, $\mathbb{R}$, and $\mathbb{F}_q$, respectively. Thus we find a much larger gap between classical and quantum algorithms than the univariate case, where the speedup is by a factor of $2$. For the case of $\mathbb{F}_q$, we conjecture that $2k{\mathbb{C}}$ queries also suffice to achieve probability approaching $1$ for large field order $q$, although we leave this as an open problem.

Citations (9)

Summary

We haven't generated a summary for this paper yet.