Papers
Topics
Authors
Recent
2000 character limit reached

Hedera: Scalable Indexing and Exploring Entities in Wikipedia Revision History (1701.03937v1)

Published 14 Jan 2017 in cs.AI and cs.IR

Abstract: Much of work in semantic web relying on Wikipedia as the main source of knowledge often work on static snapshots of the dataset. The full history of Wikipedia revisions, while contains much more useful information, is still difficult to access due to its exceptional volume. To enable further research on this collection, we developed a tool, named Hedera, that efficiently extracts semantic information from Wikipedia revision history datasets. Hedera exploits Map-Reduce paradigm to achieve rapid extraction, it is able to handle one entire Wikipedia articles revision history within a day in a medium-scale cluster, and supports flexible data structures for various kinds of semantic web study.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.