Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Hölder projective divergences (1701.03916v1)

Published 14 Jan 2017 in cs.LG, cs.CV, cs.IT, and math.IT

Abstract: We describe a framework to build distances by measuring the tightness of inequalities, and introduce the notion of proper statistical divergences and improper pseudo-divergences. We then consider the H\"older ordinary and reverse inequalities, and present two novel classes of H\"older divergences and pseudo-divergences that both encapsulate the special case of the Cauchy-Schwarz divergence. We report closed-form formulas for those statistical dissimilarities when considering distributions belonging to the same exponential family provided that the natural parameter space is a cone (e.g., multivariate Gaussians), or affine (e.g., categorical distributions). Those new classes of H\"older distances are invariant to rescaling, and thus do not require distributions to be normalized. Finally, we show how to compute statistical H\"older centroids with respect to those divergences, and carry out center-based clustering toy experiments on a set of Gaussian distributions that demonstrate empirically that symmetrized H\"older divergences outperform the symmetric Cauchy-Schwarz divergence.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.