Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Truncation-free Hybrid Inference for DPMM (1701.03743v1)

Published 13 Jan 2017 in cs.LG and stat.ML

Abstract: Dirichlet process mixture models (DPMM) are a cornerstone of Bayesian non-parametrics. While these models free from choosing the number of components a-priori, computationally attractive variational inference often reintroduces the need to do so, via a truncation on the variational distribution. In this paper we present a truncation-free hybrid inference for DPMM, combining the advantages of sampling-based MCMC and variational methods. The proposed hybridization enables more efficient variational updates, while increasing model complexity only if needed. We evaluate the properties of the hybrid updates and their empirical performance in single- as well as mixed-membership models. Our method is easy to implement and performs favorably compared to existing schemas.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)