Logics for Word Transductions with Synthesis (1701.03670v4)
Abstract: We introduce a logic, called LT, to express properties of transductions, i.e. binary relations from input to output (finite) words. In LT, the input/output dependencies are modelled via an origin function which associates to any position of the output word, the input position from which it originates. LT is well-suited to express relations (which are not necessarily functional), and can express all regular functional transductions, i.e. transductions definable for instance by deterministic two-way transducers. Despite its high expressive power, LT has decidable satisfiability and equivalence problems, with tight non-elementary and elementary complexities, depending on specific representation of LT-formulas. Our main contribution is a synthesis result: from any transduction R defined in LT , it is possible to synthesise a regular functional transduction f such that for all input words u in the domain of R, f is defined and (u,f(u)) belongs to R. As a consequence, we obtain that any functional transduction is regular iff it is LT-definable. We also investigate the algorithmic and expressiveness properties of several extensions of LT, and explicit a correspondence between transductions and data words. As a side-result, we obtain a new decidable logic for data words.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.