Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Rate-Distortion Region of a Gray-Wyner Model with Side Information (1701.03612v1)

Published 13 Jan 2017 in cs.IT and math.IT

Abstract: In this work, we establish a full single-letter characterization of the rate-distortion region of an instance of the Gray-Wyner model with side information at the decoders. Specifically, in this model an encoder observes a pair of memoryless, arbitrarily correlated, sources $(Sn_1,Sn_2)$ and communicates with two receivers over an error-free rate-limited link of capacity $R_0$, as well as error-free rate-limited individual links of capacities $R_1$ to the first receiver and $R_2$ to the second receiver. Both receivers reproduce the source component $Sn_2$ losslessly; and Receiver $1$ also reproduces the source component $Sn_1$ lossily, to within some prescribed fidelity level $D_1$. Also, Receiver $1$ and Receiver $2$ are equipped respectively with memoryless side information sequences $Yn_1$ and $Yn_2$. Important in this setup, the side information sequences are arbitrarily correlated among them, and with the source pair $(Sn_1,Sn_2)$; and are not assumed to exhibit any particular ordering. Furthermore, by specializing the main result to two Heegard-Berger models with successive refinement and scalable coding, we shed light on the roles of the common and private descriptions that the encoder should produce and what they should carry optimally. We develop intuitions by analyzing the developed single-letter optimal rate-distortion regions of these models, and discuss some insightful binary examples.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.