Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Prior matters: simple and general methods for evaluating and improving topic quality in topic modeling (1701.03227v3)

Published 12 Jan 2017 in cs.CL, cs.IR, and cs.LG

Abstract: Latent Dirichlet Allocation (LDA) models trained without stopword removal often produce topics with high posterior probabilities on uninformative words, obscuring the underlying corpus content. Even when canonical stopwords are manually removed, uninformative words common in that corpus will still dominate the most probable words in a topic. In this work, we first show how the standard topic quality measures of coherence and pointwise mutual information act counter-intuitively in the presence of common but irrelevant words, making it difficult to even quantitatively identify situations in which topics may be dominated by stopwords. We propose an additional topic quality metric that targets the stopword problem, and show that it, unlike the standard measures, correctly correlates with human judgements of quality. We also propose a simple-to-implement strategy for generating topics that are evaluated to be of much higher quality by both human assessment and our new metric. This approach, a collection of informative priors easily introduced into most LDA-style inference methods, automatically promotes terms with domain relevance and demotes domain-specific stop words. We demonstrate this approach's effectiveness in three very different domains: Department of Labor accident reports, online health forum posts, and NIPS abstracts. Overall we find that current practices thought to solve this problem do not do so adequately, and that our proposal offers a substantial improvement for those interested in interpreting their topics as objects in their own right.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.