Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Visual Multiple-Object Tracking for Unknown Clutter Rate (1701.02273v3)

Published 9 Jan 2017 in cs.CV

Abstract: In multi-object tracking applications, model parameter tuning is a prerequisite for reliable performance. In particular, it is difficult to know statistics of false measurements due to various sensing conditions and changes in the field of views. In this paper we are interested in designing a multi-object tracking algorithm that handles unknown false measurement rate. Recently proposed robust multi-Bernoulli filter is employed for clutter estimation while generalized labeled multi-Bernoulli filter is considered for target tracking. Performance evaluation with real videos demonstrates the effectiveness of the tracking algorithm for real-world scenarios.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.