Emergent Mind

Abstract

Consider a memoryless relay channel, where the relay is connected to the destination with an isolated bit pipe of capacity $C0$. Let $C(C0)$ denote the capacity of this channel as a function of $C0$. What is the critical value of $C0$ such that $C(C0)$ first equals $C(\infty)$? This is a long-standing open problem posed by Cover and named "The Capacity of the Relay Channel," in $Open \ Problems \ in \ Communication \ and \ Computation$, Springer-Verlag, 1987. In this paper, we answer this question in the Gaussian case and show that $C(C0)$ can not equal to $C(\infty)$ unless $C_0=\infty$, regardless of the SNR of the Gaussian channels. This result follows as a corollary to a new upper bound we develop on the capacity of this channel. Instead of "single-letterizing" expressions involving information measures in a high-dimensional space as is typically done in converse results in information theory, our proof directly quantifies the tension between the pertinent $n$-letter forms. This is done by translating the information tension problem to a problem in high-dimensional geometry. As an intermediate result, we develop an extension of the classical isoperimetric inequality on a high-dimensional sphere, which can be of interest in its own right.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.