Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Deep Convolutional Denoising of Low-Light Images (1701.01687v1)

Published 6 Jan 2017 in cs.CV

Abstract: Poisson distribution is used for modeling noise in photon-limited imaging. While canonical examples include relatively exotic types of sensing like spectral imaging or astronomy, the problem is relevant to regular photography now more than ever due to the booming market for mobile cameras. Restricted form factor limits the amount of absorbed light, thus computational post-processing is called for. In this paper, we make use of the powerful framework of deep convolutional neural networks for Poisson denoising. We demonstrate how by training the same network with images having a specific peak value, our denoiser outperforms previous state-of-the-art by a large margin both visually and quantitatively. Being flexible and data-driven, our solution resolves the heavy ad hoc engineering used in previous methods and is an order of magnitude faster. We further show that by adding a reasonable prior on the class of the image being processed, another significant boost in performance is achieved.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.