Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Non interactive simulation of correlated distributions is decidable (1701.01485v2)

Published 5 Jan 2017 in cs.CC, cs.IT, math.IT, and math.PR

Abstract: A basic problem in information theory is the following: Let $\mathbf{P} = (\mathbf{X}, \mathbf{Y})$ be an arbitrary distribution where the marginals $\mathbf{X}$ and $\mathbf{Y}$ are (potentially) correlated. Let Alice and Bob be two players where Alice gets samples ${x_i}{i \ge 1}$ and Bob gets samples ${y_i}{i \ge 1}$ and for all $i$, $(x_i, y_i) \sim \mathbf{P}$. What joint distributions $\mathbf{Q}$ can be simulated by Alice and Bob without any interaction? Classical works in information theory by G{\'a}cs-K{\"o}rner and Wyner answer this question when at least one of $\mathbf{P}$ or $\mathbf{Q}$ is the distribution on ${0,1} \times {0,1}$ where each marginal is unbiased and identical. However, other than this special case, the answer to this question is understood in very few cases. Recently, Ghazi, Kamath and Sudan showed that this problem is decidable for $\mathbf{Q}$ supported on ${0,1} \times {0,1}$. We extend their result to $\mathbf{Q}$ supported on any finite alphabet. We rely on recent results in Gaussian geometry (by the authors) as well as a new \emph{smoothing argument} inspired by the method of \emph{boosting} from learning theory and potential function arguments from complexity theory and additive combinatorics.

Citations (27)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube