Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NIPS 2016 Workshop on Representation Learning in Artificial and Biological Neural Networks (MLINI 2016) (1701.01437v2)

Published 6 Jan 2017 in stat.ML

Abstract: This workshop explores the interface between cognitive neuroscience and recent advances in AI fields that aim to reproduce human performance such as natural language processing and computer vision, and specifically deep learning approaches to such problems. When studying the cognitive capabilities of the brain, scientists follow a system identification approach in which they present different stimuli to the subjects and try to model the response that different brain areas have of that stimulus. The goal is to understand the brain by trying to find the function that expresses the activity of brain areas in terms of different properties of the stimulus. Experimental stimuli are becoming increasingly complex with more and more people being interested in studying real life phenomena such as the perception of natural images or natural sentences. There is therefore a need for a rich and adequate vector representation of the properties of the stimulus, that we can obtain using advances in machine learning. In parallel, new ML approaches, many of which in deep learning, are inspired to a certain extent by human behavior or biological principles. Neural networks for example were originally inspired by biological neurons. More recently, processes such as attention are being used which have are inspired by human behavior. However, the large bulk of these methods are independent of findings about brain function, and it is unclear whether it is at all beneficial for machine learning to try to emulate brain function in order to achieve the same tasks that the brain achieves.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube