Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On spectral partitioning of signed graphs (1701.01394v2)

Published 5 Jan 2017 in cs.DS, cs.LG, math.NA, and stat.ML

Abstract: We argue that the standard graph Laplacian is preferable for spectral partitioning of signed graphs compared to the signed Laplacian. Simple examples demonstrate that partitioning based on signs of components of the leading eigenvectors of the signed Laplacian may be meaningless, in contrast to partitioning based on the Fiedler vector of the standard graph Laplacian for signed graphs. We observe that negative eigenvalues are beneficial for spectral partitioning of signed graphs, making the Fiedler vector easier to compute.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube