Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Unsupervised neural and Bayesian models for zero-resource speech processing (1701.00851v1)

Published 3 Jan 2017 in cs.CL and cs.LG

Abstract: In settings where only unlabelled speech data is available, zero-resource speech technology needs to be developed without transcriptions, pronunciation dictionaries, or LLMling text. There are two central problems in zero-resource speech processing: (i) finding frame-level feature representations which make it easier to discriminate between linguistic units (phones or words), and (ii) segmenting and clustering unlabelled speech into meaningful units. In this thesis, we argue that a combination of top-down and bottom-up modelling is advantageous in tackling these two problems. To address the problem of frame-level representation learning, we present the correspondence autoencoder (cAE), a neural network trained with weak top-down supervision from an unsupervised term discovery system. By combining this top-down supervision with unsupervised bottom-up initialization, the cAE yields much more discriminative features than previous approaches. We then present our unsupervised segmental Bayesian model that segments and clusters unlabelled speech into hypothesized words. By imposing a consistent top-down segmentation while also using bottom-up knowledge from detected syllable boundaries, our system outperforms several others on multi-speaker conversational English and Xitsonga speech data. Finally, we show that the clusters discovered by the segmental Bayesian model can be made less speaker- and gender-specific by using features from the cAE instead of traditional acoustic features. In summary, the different models and systems presented in this thesis show that both top-down and bottom-up modelling can improve representation learning, segmentation and clustering of unlabelled speech data.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)