Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Raising Graphs From Randomness to Reveal Information Networks (1701.00406v1)

Published 2 Jan 2017 in cs.SI and physics.soc-ph

Abstract: We analyze the fine-grained connections between the average degree and the power-law degree distribution exponent in growing information networks. Our starting observation is a power-law degree distribution with a decreasing exponent and increasing average degree as a function of the network size. Our experiments are based on three Twitter at-mention networks and three more from the Koblenz Network Collection. We observe that popular network models cannot explain decreasing power-law degree distribution exponent and increasing average degree at the same time. We propose a model that is the combination of exponential growth, and a power-law developing network, in which new "homophily" edges are continuously added to nodes proportional to their current homophily degree. Parameters of the average degree growth and the power-law degree distribution exponent functions depend on the ratio of the network growth exponent parameters. Specifically, we connect the growth of the average degree to the decreasing exponent of the power-law degree distribution. Prior to our work, only one of the two cases were handled. Existing models and even their combinations can only reproduce some of our key new observations in growing information networks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.