Even $1 \times n$ Edge-Matching and Jigsaw Puzzles are Really Hard (1701.00146v1)
Abstract: We prove the computational intractability of rotating and placing $n$ square tiles into a $1 \times n$ array such that adjacent tiles are compatible--either equal edge colors, as in edge-matching puzzles, or matching tab/pocket shapes, as in jigsaw puzzles. Beyond basic NP-hardness, we prove that it is NP-hard even to approximately maximize the number of placed tiles (allowing blanks), while satisfying the compatibility constraint between nonblank tiles, within a factor of 0.9999999851. (On the other hand, there is an easy $1 \over 2$-approximation.) This is the first (correct) proof of inapproximability for edge-matching and jigsaw puzzles. Along the way, we prove NP-hardness of distinguishing, for a directed graph on $n$ nodes, between having a Hamiltonian path (length $n-1$) and having at most $0.999999284 (n-1)$ edges that form a vertex-disjoint union of paths. We use this gap hardness and gap-preserving reductions to establish similar gap hardness for $1 \times n$ jigsaw and edge-matching puzzles.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.