Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Discoveries of Physical and Semantic Concepts via Association Priors of Neuron Groups (1612.09438v2)

Published 30 Dec 2016 in cs.LG

Abstract: The recent successful deep neural networks are largely trained in a supervised manner. It {\it associates} complex patterns of input samples with neurons in the last layer, which form representations of {\it concepts}. In spite of their successes, the properties of complex patterns associated a learned concept remain elusive. In this work, by analyzing how neurons are associated with concepts in supervised networks, we hypothesize that with proper priors to regulate learning, neural networks can automatically associate neurons in the intermediate layers with concepts that are aligned with real world concepts, when trained only with labels that associate concepts with top level neurons, which is a plausible way for unsupervised learning. We develop a prior to verify the hypothesis and experimentally find the proposed prior help neural networks automatically learn both basic physical concepts at the lower layers, e.g., rotation of filters, and highly semantic concepts at the higher layers, e.g., fine-grained categories of an entry-level category.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Shuai Li (295 papers)
  2. Kui Jia (125 papers)
  3. Xiaogang Wang (230 papers)

Summary

We haven't generated a summary for this paper yet.